The Almost (E,q) ($\mathrm{N}, \mathrm{P}_{\mathrm{n}}$) Summability of Fourier Series

Santosh Kumar Sinha ${ }^{1}$ U.K.Shrivastava ${ }^{2}$
${ }^{1}$ Deptt of Mathematics, Lakhmi Chand Institute of Technology Bilaspur Chhattisgarh(India)
${ }^{2}$ Deptt of mathematics,Govt Bilasa Girls PG College,Bilaspur(C.G.) India

Abstract

The degree of approximation of function $f \in$ almost lips α by the $(E, q)\left(N, P_{n}\right)$ means of Fourier series is determined.

Keywords: degree of Approximation, class $L^{\text {aip }} \alpha,(\mathbf{E}, q)$ summability, (N,Pn) summability Product summability, Lebesgue integral.

I. INTRODUCTION

Let \sum an be a given infinite series with the sequence of partial $\operatorname{sums}\left\{S_{n}\right\}$. Let $\left\{P_{n}\right\}$ be a sequence of positive real numbers such that

$$
\begin{equation*}
P_{n}=\sum_{v=0}^{n} P_{v} \rightarrow \infty \text { as } n \rightarrow \infty\left(P_{-i}=P_{i}=0, i \geq 0\right) \tag{1.1}
\end{equation*}
$$

The sequence to sequence transformation

$$
\begin{equation*}
t_{n}=\frac{1}{P n} \sum_{v=0}^{n} P n-v S v \tag{1.2}
\end{equation*}
$$

Defines the sequence $\left\{t_{n}\right\}$ of the $\left(N, P_{n}\right)$ means of the sequence $\left\{S_{n}\right\}$ generated by the sequence of coefficient $\left\{P_{n}\right\}$. If

$$
\begin{equation*}
t_{n} \rightarrow s \text { as } n \rightarrow \infty \tag{1.3}
\end{equation*}
$$

then the series $\quad \sum a_{n}$ is said to be $\left(N, P_{n}\right)$ summable to s.
The condition for regularity of Norlund Summ ability (N, P_{n}) are easily seen to be
(i) $\quad \frac{p_{n}}{P_{n}} \rightarrow 0$ as $n \rightarrow \infty$
(ii) $\quad \sum_{k=0}^{n} P_{K}=o\left(P_{n}\right)$ as $n \rightarrow \infty$.

The sequence to sequence transformation

$$
\begin{equation*}
T_{n}=\frac{1}{(1+q)^{n}} \sum_{v=0}^{n}\binom{n}{v} q^{n-v} \mathrm{~Sv} \tag{1.4}
\end{equation*}
$$

Defines the sequence $\left\{T_{n}\right\}$ of the (E, q) mean of the sequence $\left\{S_{n}\right\}$ If

$$
\begin{equation*}
T_{n} \rightarrow s \text { as } n \rightarrow \infty \tag{1.5}
\end{equation*}
$$

then the series $\sum a_{n}$ is said to be (E, q) summable to s.
Clearly (E, q) method is regular.
The (E, q) transform of the $\left(N, P_{n}\right)$ transform of $\left\{S_{n}\right\}$ is defined by

$$
\tau_{n}=\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k} \quad T_{K}
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 2, Issue 1, pp: (17-20), Month: April 2014 - September 2014, Available at: www.researchpublish.com

$$
\begin{equation*}
=\frac{1}{(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{p k} \sum_{v=0}^{k} P_{k-v} S v\right\} \tag{1.6}
\end{equation*}
$$

If $\tau_{n} \rightarrow s \quad$ as $n \rightarrow \infty$ then $\sum a_{n}$ is said to be $(E, q)\left(N, P_{n}\right)$ summable to s.
Let $f(t)$ be a periodic function with period 2π L- integrable $\operatorname{over}(-\pi, \pi)$. The Fourier series
Associated with f at any point x is defined by

$$
\begin{equation*}
f(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n x+b_{n} \sin n x\right) \tag{1.7}
\end{equation*}
$$

And the conjugate series of the Fourier series is

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(a_{n} \quad \cos n x-b_{n} \quad \sin n x\right) \tag{1.8}
\end{equation*}
$$

A function $\mathrm{f} € \operatorname{Lip} \alpha$, if $\quad|f(x+t)-f(x)|=\mathrm{o}|t|^{\alpha} 0<\alpha \leq 1$
Let $0<\alpha \leq 1$ and let $f: R \rightarrow R$ be almost Lipchitz of order $\alpha, f € \mathrm{~L}^{\mathrm{a}} \mathrm{ip} \alpha$ in the sense that there is a constant $M=M_{f} \geq 0$ and for each $x \in R$ there is a subset. $A_{x} \subset[0, \pi / 2]$ of measure zero such that $t \in[0, \pi / 2] \backslash A_{x}$ implies

$$
\begin{equation*}
|f(x+2 t)-f(x-2 t)| \leq M t^{\alpha} \tag{1.10}
\end{equation*}
$$

Every $\operatorname{Lip} \alpha$ function is trivially Laip α, but the class Lip α greatly extends the class $\operatorname{Lip} \alpha$. For $0<t \leq \pi / 2$, since $\sin t \geq \frac{2 t}{\pi}$. So for each $x \in R$.

We have $|\Psi(t) \cos t| \leq M t^{\alpha} \frac{\pi}{2 t}=M t^{\alpha-1} \frac{\pi}{2}, t \in[0, \pi / 2] \backslash A_{x}$
Where $\Psi(t)=f(x+2 t)-f(x-2 t)$.
We use the following notation throughout this paper

$$
\begin{gathered}
\varphi(t)=f(x+t)-f(x-t)-2 f(x) \\
\Psi(t)=1 / 2\{f(x+t)-f(x-t)\} \text { And } \\
K_{n}(t)=\frac{1}{2 \pi(1+q)^{n}} \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{p_{k}} \sum_{v=0}^{k} P_{k-v} \frac{\sin [(v+1 / 2) t}{\sin t / 2}\right\}
\end{gathered}
$$

II. MAIN THEOREM

Theorem 2.1-If f is a 2π periodic function of class $\mathrm{L}^{\mathrm{a}} \mathrm{ip} \alpha$ then t he degree of a approximation by the product $(\mathrm{E}, \mathrm{q})\left(\mathrm{N}, \mathrm{P}_{\mathrm{n}}\right)$ summability mean on its Fourier series (1.7) is given by

$$
\left\|\tau_{n}-f\right\|_{\infty}=o\left(\frac{1}{(n+1)^{\alpha}}\right) 0<\alpha<1 \quad \text { where } \tau_{\mathrm{n}} \text { on defined in (1.6). }
$$

1. Lemma - We require the following lemma to prove the theorem.
3.1 Lemma- $\quad|\operatorname{Kn}(\mathrm{t})|=o(n) \quad 0 \leq \mathrm{t} \leq \frac{1}{n+1}$

Proof - For $0 \leq \mathrm{t} \leq \frac{1}{n+1}$ we have sinnt $\leq \mathrm{n}$ sint then

$$
\begin{aligned}
|\operatorname{Kn}(\mathrm{t})|= & \frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{p_{k}} \sum_{v=0}^{k} P_{k-v} \frac{\sin \mid(v+1 / 2) t}{\sin t / 2}\right\}\right| \\
& \leq \frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{p_{k}} \sum_{v=0}^{k} P_{k-v} \frac{(2 v+1) \sin t / 2}{\sin t / 2}\right\}\right|
\end{aligned}
$$

International Journal of Mathematics and Physical Sciences Research ISSN 2348-5736 (Online)
Vol. 2, Issue 1, pp: (17-20), Month: April 2014 - September 2014, Available at: www.researchpublish.com

$$
\begin{aligned}
& \leq \frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}(2 k+1)\left\{\frac{1}{p_{k}} \sum_{v=0}^{k} P_{k-v}\right\}\right| \\
& \leq \frac{(2 n+1)}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\right| \\
& \quad=o(n)
\end{aligned}
$$

3.2 Lemma $|\operatorname{Kn}(\mathrm{t})|=o\left(\frac{1}{t}\right)$ for $\frac{1}{n+1} \leq \mathrm{t} \leq \pi$.

Proof- For $\frac{1}{n+1} \leq \mathrm{t} \leq \pi$ we have $\sin (\mathrm{t} / 2) \geq \mathrm{t} / \pi$, sinnt ≤ 1 then
$|\operatorname{Kn}(\mathrm{t})|=\frac{1}{2 \pi(1+q)^{n}}$
$\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{p_{k}} \sum_{v=0}^{k} P_{k-v} \frac{\sin \left(v+\frac{1}{2}\right) t}{\sin \frac{t}{2}}\right\}\right|$

$$
\begin{aligned}
& \leq \frac{1}{2 \pi(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{p_{k}} \sum_{v=0}^{k} \frac{\pi}{t} P_{k-v}\right\}\right| \\
& \leq \frac{1}{2 t(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{p_{k}} \sum_{v=0}^{k} P_{k-v}\right\}\right| \\
& =\frac{1}{2 t(1+q)^{n}}\left|\sum_{k=0}^{n}\binom{n}{k} q^{n-k}\right| \\
& =o\left(\frac{1}{t}\right) .
\end{aligned}
$$

Proof the theorem:

The $\mathrm{n}^{\text {th }}$ partial sum $\operatorname{Sn}(\mathrm{x})$ of the fourier series (1.7) can be written as
$\mathrm{S}_{\mathrm{n}}(\mathrm{x})-\mathrm{f}(\mathrm{x})=\frac{1}{2 \pi} \int_{0}^{\pi} \emptyset(t) \frac{\sin \left(\left(\mathrm{n}+\frac{1}{2}\right) t\right.}{\sin (t / 2)} d t$

The (N, Pn) transform of $\operatorname{Sn}(\mathrm{x})$ is given by
$\operatorname{tn}-\mathrm{f}(\mathrm{x})=\frac{1}{2 \pi P_{n}} \int_{0}^{\pi} \emptyset(t) \sum_{k=0}^{n} p_{n-k} \frac{\sin \Gamma\left(n+\frac{1}{2}\right) t}{\sin (t / 2)} d t$
The (E, q) (N, p_{n}) transform of $\operatorname{Sn}(\mathrm{x})$ is given by

$$
\begin{aligned}
\left\|\tau_{n}-f\right\|=\frac{1}{2 \pi(1+q)^{n}} \int_{0}^{\pi} \emptyset & (t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{p_{k}} \sum_{v=0}^{k} p_{k-v} \frac{\sin \left[\left(\hat{l}+\frac{1}{2}\right) t\right.}{\sin (t / 2)} d t\right\} \\
& \left.=\int_{0}^{\pi} \emptyset(t) k_{n}(t) d t\right\} \\
& =\left\{\int_{0}^{1 / n+1}+\int_{1 / n+1}^{\pi}\right\} \emptyset(t) k_{n}(t) d t \\
& =\mathrm{I}_{1}+\mathrm{I}_{2}
\end{aligned}
$$

$$
\left|\mathrm{I}_{1}\right|=\frac{1}{2 \pi(1+q)^{n}}\left|\int_{0}^{1 / n+1} \emptyset(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{p_{k}} \sum_{v=0}^{k} P_{k-v} \frac{\sin (4 v+1 / 2) t}{\sin t / 2}\right\} d t\right|
$$

$$
=\mathrm{o}(\mathrm{n}) \int_{0}^{1 / n+1}|\emptyset(t)| \mathrm{dt} \quad \text { By Lemma(3.1) }
$$

$$
\begin{align*}
&=o(n) \int_{0}^{1 / n+1} M\left|t^{\alpha}\right| \mathrm{dt} \\
& \leq \mathrm{o}(\mathrm{n}) \quad\left[\frac{t^{\alpha+1}}{\alpha+1}\right]_{0}^{1 / n+1} \\
&=\mathrm{o}\left[\frac{1}{(n+1)^{\alpha}}\right] \\
&\left|\mathrm{I}_{2}\right|=\frac{1}{2 \pi(1+q)^{n}}\left|\int_{1 / n+1}^{\pi} \emptyset(t) \sum_{k=0}^{n}\binom{n}{k} q^{n-k}\left\{\frac{1}{p_{k}} \sum_{v=0}^{k} P_{k-v} \frac{\sin 1(\hat{l}+1 / 2) t}{\sin t / 2}\right\} d t\right| \\
& \leq \int_{l / n+1}^{\pi}|\emptyset(t)|\left|K_{n}(t)\right| d t \\
&=\int_{l / n+1}^{\pi}|\emptyset(t)| o\left(\frac{l}{t}\right) d t \tag{3.2}\\
& \leq \int_{l / n+1}^{\pi} M\left|t^{\alpha}\right| o\left(\frac{l}{t}\right) d t \\
& \leq \int_{l / n+1}^{\pi} t^{\alpha-1} \mathrm{dt} \\
&= o\left(\frac{1}{(n+1)^{\alpha}}\right) \tag{4.3}
\end{align*}
$$

From (4.1) (4.2) and (4.3) we have
$\left|\tau_{n}-f(t)\right|=\mathrm{o}\left(\frac{1}{(n+1)^{\alpha}}\right)$ for $0<\alpha<1$.

Hence
$\left\|\tau_{n}-f(x)\right\|=\sup _{-\pi<x<\pi}\left|\tau_{n}-f(x)\right|=\mathrm{o}\left(\frac{1}{(n+l)^{\alpha}}\right) \quad 0<\alpha<1$.

This completes the proof of the theorem.

Corollary: If $\mathrm{Pn}=1 \forall n$ and $\mathrm{q}=1$ then theorem reduces to degree of approximation for $(\mathrm{E}, 1)(\mathrm{C}, 1)$ method of Fourier series.

REFERENCES

[1] Alexits,G.,Convergence problems of orthogonal series,PergamonPress, London (1961).
[2] Lal,S.and Singh,H.P.,The degree of approximation of almost Lipschitz function by (N,p,q) (E,1) means,Int.Math. Forum, 5(2010), no.34, 1663-1671.
[3] Qureshi,K., On degree of approximation of a periodic function by almost Norlund Means, Tamkang J. Math., 12(1981) no.1-35.
[4] Qureshi,K and Neha,H.K.,A class of functions and their degree of approximation Ganita, 41 (1990) no.1,37.
[5] Sahney, B.N. and Goel, D.S., on the degree of approximation of continuous function, Rachi Univ. Math., J. 4 (1973), 50-53.

