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. INTRODUCTION

Let )} an be a given infinite series with the sequence of partial sums{S, }. Let {P,} be a sequence of positive real numbers
such that

P,=Y" (4P, » wasn - w(P_, =P, =0, i > 0) ... (LD

The sequence to sequence transformation

t, = i roPn—vSo . (1.2)

Defines the sequence {t, } of the (N, B,) means of the sequence {S,,} generated by the sequence of coefficient{B,}. If
t, > sasn —> o (1.3)
then the series ) a, issaidtobe (N,B,) summable tos.

The condition for regularity of Norlund Summ ability (N, B,) are easily seen to be

(M Z—" — 0 as n—>
(i) "o Pk=0(B) a n — o

The sequence to sequence transformation

T, = (1+1q)n Z:zo(ﬁ)qn—” sv (1.4)
Defines the sequence {T,} of the (E , q) mean of the sequence {S,} If

T, >sasn—>o (1.5)
then the series Y a, issaidto be (E,q) summable to s.
Clearly (E , q) method is regular.

The (E, q) transform of the (N, B,) transform of {S,} is defined by
— 1 n n n—k
Ty = A+q)" k=0 (k) q TK
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- _1 P (Z) qn—k {% Zﬁ:o P, Sv} ........ (1.6)

TR

Ift,—s as n — «othen ) a, issaidtobe (E,q)(N,B,) summable tos.
Let f (t) be a periodic function with period 2 L- integrable over( —m, ). The Fourier series
Associated with f at any point x is defined by

flx) = az—o+ Yo_q(a, cosnx + b, sinnx) ... (1.7
And the conjugate series of the Fourier series is

Yw_4(a, cosnx— b, sinnx) ceeen. (1.8)
Afunctionf€Lip o, if |[f(x+t)—f()|=0lt|*0 < a <1 ... (1.9)
Let 0 < a < landletf: R — R bealmost Lipchitz of order o, f€ L%p a in the sense that there is a constant
M = M; = 0and for each x € R there is a subset. A, < [0,m/2] of measure zero suchthat t € [0,7/2]\ A,
implies

If(x+2t) — f(x —2t)| < Mt* ... (1.10)
Every Lip a function is trivially Laipa, but the class Lip o greatly extends the class Lip o .For 0 < t < m/2, since

. 2
sint > ;t .So for each x €R.

We have |¥ (t) cost | <Mt® — = Mt*™" 2, t€[0,1/2]\ 4,

Where ¥(t) = f(x + 2t)- f(x- 2t).
We use the following notation throughout this paper
p) = fx+ - flx-1)-2f(x)

W () =%{f(x + t)- f(x- )} And

—_ 1 yn N\ n—k (1 vk sinffv+1/2)t
Kn (t) - 2w (1+q)" k=0 (k) q {pk =0 Pk—v —sin 02 }

1. MAIN THEOREM

Theorem 2.1-If f is a 2= periodic function of class L%p a thenthe degree of a approximation by the product

(E,q) (N,P,) summability mean on its Fourier series (1.7) is given by

1 . .
Iz, — fll= o ((n+1)fx) 0<a<l where 1, on defined in (1.6).
1. Lemma — We require the following lemma to prove the theorem.
= S
3.1 Lemma- | Kn(t)|[=o(n) 0<t< —

1 . .
Proof —For0<t< 7 we have sinnt <n sint then

1

_ n n\ .k 1wk sinffv+1/2)t |
| Kn(t)l - 2n(1+q)™ k=0 (k) q {pk v=0 Py sin t/2 }
n n\ o,k 1 vk (2v+1)sin t/2
= 2r(1+q)" k=0 (k) q {pk v=0Pi—v sin t/2 }|
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n—k
S o 27.[(1+q)n Zk 0( ) (2k+ 1){ ZV OPk U}
(2n+1) n (MY ok
= 2n(1+q)" Zk=0 (k)q |
= o(n)
32 Lemma  [Kn@®)l= o(3) for ——<t<m
Proof- For —— <t <= we have sin(t/2) > t/n , sinnt < 1 then | Kn(t)| = _r
n+1 2m(1+q)"
1
n (MY ek (1 sk sin (v45)¢
2k=0 (k)q {Pk v=0Pr—v Sin% }
n_ M nkflvk @
= 2m(1+q)" (k) {pk Lv=o t Pk_v}

Sioo () 4" - Zhoo P

<——m
- 2t(1+q)"

_ 1
2t(1+q)"

Zi-o () "]

Proof the theorem:
The n" partial sum Sn(x) of the fourier series (1.7) can be written as

Pt
sinfifn+7)t

sin(t/2) dt

$10) —f (%) = - [ B(8)
The (N,Pn) transform of Sn(x) is given by

sinfn+5)t
sin(t/2)

t—f (x) = 5= J, 0(6) T Pas
The (E,q) (N, p,,) transform of Sn(x) is given by

sin! Cv+2)t

10 = F1= s Jo OO Zhoo(Da" ™ (- hoo Py o 5o de)

=[ O(D)k, (¢) dt}
- U””“ ) OOk, (E)dt

=+l @1

1
2n(1+q)"

L] =

f01/n+1 8O Y, (Z) gt {i kP, sin&@ﬂ/z)t} dt|

sin t/2

1/n+1

=o(n) J, |@(t)| dt By Lemma(3.1)
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| I;] =

= o(m) ;" Mt dt

[t“+1 1/n+1

s 0(n) o110

= o[ﬁ] ......... 4.2)

1
2m(1+q)"

T n k(1 ok sinffv+1/2)t
fl/n+1 2(t) Z‘]"IZO (k) q" {E v=0 Py sin t/2 }dt|

st 01K, (0)1de

= [l 0®) 0t By Lemma  (3.2)
T « 1
< i Mlt<To(dt
= ln/n+lto<_:L dt
1
= o(m) ......... (4.3)

From (4.1) (4.2) and (4.3) we have

_ 1
T, = f@®I = O(W) for 0<x< 1.
Hence
su 1
”Tn _f(x)“ = < }:< - |‘I,'n —f(x)l = O((n+1)°<) 0<x <1,

This completes the proof of the theorem.

Corollary: If Pn =1 vn and q= 1 then theorem reduces to degree of approximation for (E,1) (C,1) method of Fourier

series.
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